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i. Formulation of the Problem. We will consider the problem of steady-state stabilized 
flow of an incompressible viscous liquid through a cylindrical channel with circular cross 
section of radius a, rotating at a constant angular velocity ~ about an axis which inter- 
sects the channel axis and is perpendicular thereto. 

We introduce the right-hand cartesian coordinate system Ox*y*z*, rigidly fixed to the 
channel and oriented such that the axis Oz* is directed along the channel axis in the 
direction of the flow, while the axis Oy* coincides in direction with the angular velocity 

We will assume that liquid flow in the channel takes place under the action of a con- 
stant longitudinal gradient in the modified pressure 3Y/Jz* = a, and that the Rossby number 
Ro (Ro = m~/ma << i) is small. 

With these assumptions liquid motion in the channel will be described by the following 
system of differential equations [i]: 

A A ~  = 2ROw/dg, Aw --2RO~/Oy- t -2 ,  ( 1 . 1 )  

where 

A : O~lOx 2 + O210y~; x :  x*/a; y y * / a ;  w - = w * / U ;  ( 1 . 2 )  

:: ~*/Ua; R - -  y~ ::: ~a2/v; H : p/p --  (~o~/2)(x *~ + z*2); 

U = a a a / 2 v  is the characteristic velocity; u*, v*, w* are the projections of the relative 
velocity vector on the axes x*, y*, and z*; ~* is the flow function of the secondary flow, 
related to u* and v* by the expressions u* = 3~*/3y*, v* = --3~*/~x; p is pressure; p is 
density; ~, kinematic viscosity. The boundary conditions for system (i.i) are the usual 
conditions of adhesion and impermeability: 

u, :~  ==O~/Ox-: O~/Oy := 0 ~ r  x ~ - t - y  ~ : 1. ( 1 . 3 )  

2. Integration of the Equations. If we take 

r y) :~ (x ,  y) + y/~, w(x, y) :: Ao F/(x, y), 

then, according to Eq. 
equations: 

(2 . l )  

(i.i), • and f must satisfy the following system of differential 

AA% = 2R~/Oy,  A /  : - - 2 R O Z / 0 g -  (2.2) 

Solutions of system (2.2) are provided by certain polynomials Gn(x , y) and Tn(x, y). A 
linear combination of these polynomials with multiplicative constants An will also be a 
solution of this system: 

/~ : ~ A,~G,~(x, y), )~ : --  ~ AnT,~(x, y)--~ , ( 2 . 3 )  
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We will construct one more solution of system (2.2). In the plane of the channel cross 
section (the plane Oxy) we introduce a polar coordinate system r, ~, taking 

x = r cos  % y = r s i n  % ( 2 . 4 )  

We will seek a solution of system (2.2) in polar coordinates in the form 

h = ~ g~-~(,) ~o~2.~, x~= E ~+~(,-)~i~(2~+ ~)~. (2.5) 
n~0 n~0 

Substituting Eq. (2.5) in Eq. (2.2) and equating the corresponding expressions for sines 
and cosines with identical arguments, we get for definition of fan and ran+, an infinite 
system of ordinary differential equations 

1% . )  
L~ng~n == lq ~nr~.._~ __d I - -~-~ 

dr I r 2n-1 
' / 

For arbitrary 

L .  

i d k "~' -r~-rmz+l, 
;,.2; '~'~ 1 d r  1 
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5= {0, n = 0 ,  [2, n = 0 ,  
= 1, n ~ 0 ,  c b = : ,  [l, n =/= t,  

d 2 l d n ~ = -- ~ (,~ = C~, l, 2 , .  :.). 
dr ~- ' r dr r ~ 

( 2 . 6 )  

% n + l ( r )  = B ~ + l J ~ + l ( ) ~ r ) ,  g , a ~ ( r ) =  C,~.f,,~Q,r) (n 0, i ,  2, . ~ ---- . . . , ,  (2.7) 

where Jm(~.r) isanm-th order Bessel function of the first kind, and Ban+, and Can are ~- 
efficients interrelated as follows: 

C~n = ( I I /%)(B2n+l  -k  6nB..n-1), B2n+l =--(I / / )~a)(~nC~n + C2n+~, ( 2 . 8 )  

i s  a s o l u t i o n  o f  s y s t e m  ( 2 . 6 ) .  U s i n g  Eq. ( 2 . 8 ) ,  a l l  c o e f f i c i e n t s  B2n+~ a re  s e q u e n t i a l l y  
expressed in terms of the coefficient B~: 

B'2;, ~ = s 1(1"1)B~ , !l 9 _ )~ 'R=;  ( 2 . 9 )  

1"i == I, F~ = - - i  - -~ I ,  F~ = ~l ~ - !  ~I - !, f ' r  = i -5211- -~ I  ~ - ~ l  ~, 

F .  I - -  21! - - :~ ! i  ~-  q:~ qd, 

s  == - - I  - -  3q  _L :hi-' _ ~ } : - -  ~1 ~ - ~ 1 % ~ ,  

Further, if we eliminate from Eq. (2.8) the coefficients Can and take Ban+~/Ban~ = Dan+x, 
we obtain a system of recursive relationships relating to Dan+z: 

Oa = - -  ( t  + ~), 

- -  ~ ( n  = l ,  2 ,  3 . . . ) ;  ( 2 . 1 0 )  
D~n+t  = ~1 @ .Din+8 

Da, on the one hand, is defined by the first expressions of Eq. (2.10), while according to 
the second relationship, it can be represented as a continuous fraction. Equating these 
expressions for Da, we obtain 

f l  - - - I I  - 1!  ~2.11~ 
1 ~ - ~ l - t r t  I~l I,i " ' "  

the roots of which nk(k = i, 2, 3, ...) define possible values of Xk: 

4 
Z k = ~ t ~ e x p ( + - 5 ~ , 4 ) ,  bb,~ 1'3 2 - - q ~ ,  ~=/- - - - - i ' .  
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If the right side of E q .  (2.1]) is replaced by a suitable fraction of order i, we obtain an 
algebraic expression of order I + i, all roots of which are real, different, and not larger 
than 2. To each such root ~k there corresponds a unique real value of ~k and a pair of 
complex conjugate values %k- To each Xk, in turn, there corresponds a definite Bz,k. We 
take 

B~,:~ -:: (_1/h +__ iNh)/2 ( 2 . 1 2 )  

and will assume that k k = ~k exp(--3~i/4) corresponds to the plus sign, while ~k = ~k exp 
(3~i/4) corresponds to the minus sign. (We will not consider the values %k = "-~k exp(_+3~i/4) 
since for these we have eigenfunctions differing only in sign.) If we now consider Eqs. 
(2.7)-(2.9) and the relationships between Bessel and Kelvin functions of the first sort 

Jm(r[~  e x p  ( - t -3~i /4) )  = berm(~t~r) 4-  i be im(p~r ) ,  

we can show that the solution of Eq. (2.6) will be given by the following series: 

%n+~ (r) = ~ F:n+x (rib) [Mh bere=+x (phr) ,-H Nh bei~n+~ ( ~ r ) ] ,  
h = l  

oo R 
gen (r) = ~ ~ [6nF2n-x  (~h) @ F~n+l (~h)] [(Mh - -  N~) bei~n (txhr) 

- -  (M~-k N~)ber~(p~r)] (n = 0, 1, 2 . . . ) .  

I n  view of  the  l i n e a r i t y  of  sys t em (2 .2 )  the  sum of  i t s  s o l u t i o n s  (2 .3)  and (2 .5)  w i l l  a l s o  
b e  a s o l u t i o n .  From t h i s  i t  f o l l o w s  t h a t  i f  we c o n s i d e r  Eq. ( 2 . 1 )  and t r a n s f o r m  t o  p o l a r  
c o o r d i n a t e s  i n  Eq. ( 2 . 3 ) ,  t h e  s o l u t i o n  o f  t h e  o r i g i n a l  s y s t e m  ( l . 1 )  c a n  be  r e p r e s e n t e d  i n  
t h e  f o r m  

~P .... R ~ ~ n + l ( r ) - - i i - H ~ n + l ( r  ) sin(2n-,  1)~p; (2.13) 
n ~ 0  

..'v ,= A o ';- ~ [g~n (r) ~-. S,,~. (r)] cos 2n{p, (2 .14)  

where 
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2~,8! 

The constants An, Mk, N k, and Ao appearing in Eqs. (2.13), (2,14) must be determined from 
boundary conditions (1,3). With consideration of Eq. (2.4)~ it is convenient to wrine the 

latter in the form 

w : :  ~ ~-: O~/ar-= O~/O~ = 0  a~ r := t .  (2.15) 

Using Eqs. (2.13), (2.14) and satisfying the first three conditions of Eq. (2.15), we ob- 
tain an infinite system of algebraic equations for determination of the coefficients AnD 

Mk, N k 

/ S2n ( t )  q-  g~n ( t )  = 0,  

t t 

( 

and also an equation for determination of Ao~ 

t ,  n = O, 

~'~"= O, n 4 : 0 ,  

(~ = o , '~ ,  2 . . . .  ), 

( 2 . 1 6 )  

Ao : - - S o ( i )  - -  go ( i ) .  

It can be shown that the fourth condition of Eq. (2.15) is then satisfied automatically. 
If roots of Eq. (2.11) are found and a solution of system (2.16) is obtained, then Eqs. 
(2.13), (2.14) are a solution of the problem formulated. 

The question of convergence of the series of Eqs. (2,13), (2.14) remains open. We 
will only indicate that computer calculations performed for vario:is R values of practical 
interest have shown that sufficient accuracy in calculation of w(r, ~) and ~(r, ~) is re- 
alized even when only the first five coefficients Ak-~ , Mk, and N k are considered in Eqs. 
(2.13), (2.14). In calculating the values of the Kelvin function, depending on the value 
of the argument and index, either power series, Debye's formula, or Meissel's formula is 
used [2]. 

3. Channel Resistance. The mean flow velocity of the liquid through the rotating 
channel, referred to U, is defined by 

0 0 

Now substituting for w the value obtained from Eq. (2.14) and assuming that the correspond- 
ing series permit term-by-term integration, we obtain 

co 

2R 
w == A o - -  ~ 7 7  [Mj~ her1  (gj~) - -  N~  b e i t  (txh)] -!- F,  

l~ A1 , A 2 1 : " . A 1 1 

2~o.10! 2~.4!R ' '  : ~ 2 R 4 ) - i - A 6  2~7.4!R~ 2to .6!u~ ~ ~ - . . ~  

We define the hydraulic resistance coefficient of the rotating channel Xw as 

(3.1) 

Now in Eq. (3.1) we replace ~ by the corresponding expression from Eq. (1.2) and form the 
ratio of the hydraulic resistance coefficients of the rotating channel k w and the nonmoving 
channel ~o = 64/Re, and we will have 

%~Ik o =: l/4Wo, Re = 2awo/v. ( 3 . 2 )  

The solution obtained, when x* is replaced by x* • b in Eq. (1.2), is also valid for a 
channel rotating with constant angular velocity ~ relative to an axis which is perpendicular 
to the channel axis, but displaced therefrom by a distance b. 

4. Results. The longitudinal distribution of the velocity w is symmetric relative to 
the axes Ox and Oy for all R values. Profiles of w/wo at the sections ~ -0 and ~ = ~12 
calculated for various R values (R = I, i0, 25~ 102 , and 103 ) are sho~m in Figs. i, 2, while 
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similar profiles for R = 103 in the sections q~ ~ - k ~ / i 2 ( k ~ = O , t , 2  . . . . .  6) are shown in Fig. 
3 (curves 0-6). 

For R ~ 1 the w distribution is practically no different from the Poiseuille distribu- 
tion for a fixed circular channel. For R >7> 1 in a circular channel, as contrasted to a 
rectangular one, the w distribution is quite nonuniform. At the same time in the diametral 
plane in the flow core w is described approximately by the expression 

W/W~a~ = (I - -  x~)~l/4, 

and w is practically constant everywhere in the plane x = 0, with the exception of a wall 
layer, where a distribution typical of Eckman's condition occurs [3]. 

A graph of the y dependence of the longitudinal component of the velocity at the 
channel center w(0, 0)/wo is shown in Fig. 4. 

The secondary flow in the cross section of the rotating channel (projections of liquid 
particle trajectories on the plane of the normal section) at all R values is a vortex pair, 
each half of which is a mirror reflection of the other half about the axis Ox. The center 
of each half of the vortex is on the axis Oy. For R << 1 the radius vector of the center 
of the vortices ro = 0.447, which coincides with the corresponding value for planar [4] and 
rectangular [5] channels. With increase in R the center of each vortex moves along the axis 
Oy toward the channel walls. The dependence of ro on y is shown in Fig. 4. 

The pattern of the secondary-flow flow lines, calculated with Eq. (2.13), coincides 
with the pattern obtained in [6] for R << I, and is shown in Fig. 5 for R = i0 ~ with a step 
A~/wo =--0.002 for y ~ 0. 

For R >> i the secondary flow in the rotating-channel flow core is a uniform flow 
directed perpendicular to the axis of rotation. The value of the transverse velocity com- 
ponent in the channel center u(0, 0)/wo is shown as a function of y in Fig. 4, where the y 
dependence of the dimensionless flow rate Q circulating in each half of the channel cross 
section (y ~ 0 or y ~ 0) and referred to unit channel length is also shown: 

784 



I 

() ' ~  

0.2 0,.'~ L' 0 ~,8 

Fig. 3 

.%0 Y 

2,5 [ 

.b 

~ S  1 i ! 
I V - - -  . . . . .  4 -  . . . .  ' "~ : % d  

! " ~ I I./ X / i 

2 -  j q ~ [ 

_ fO (a'OlUJo i 
~o 2o 3o 7 

Fig. 4 

I 

\ ','. ~x X 
I / / / / I  "'-= - -p . . . . . . . . . .  " / k\. \ k  / / / /  ?-_.J 

........ " l i \  
. . . . . . . . .  ~ L2. P?7 ---~.,-" 

] 
i 

Fig. 5 

II 

The maximum Q value ~:0.095 is attained at y >: 5. From this is follows that for all -r 
values the amount of liquid circulating in half the rotating channel cross section does not 
exceed 10% of the flow in the main direction. From the graph of ~o~/,~o = f(T) shown in Fig. 
4, according to calculations with Eq. (3.2), it follows that with increase in Y the ~ - 
drau:Jc r es~:ten~{ ,el the rotatin~ ,_:,~-;:~i incre~.~,~s "~ :e'~:':~ari~on to a fixed c!l~nli~ while 

at high T the increase is practically linear. It is interesting that the functions ),~/),o = 
f(y) for channels with round and square [5, 7] cross sections are practically identical aEd 
agree well with the experiments of [8] for Eo < i. 

A comparison of calculations of the hydraulic resistance coefficient of the rotating 
channel with the formula 

%0~">,,) : ().1:;~%,/(I -- 1.():).y), ( 4 . t )  

p r o p o s e d  i n  [ 8 ]  f o r  Ro << 1 a n d  R ~ 1 ( d a s h e d  l i n e  o f  F i g .  4 ) ,  w i t h  t h { '  r e s u l L s  o f  t i l e  
present aoalvsis reveals that gq. (4.1) gives lowered values oi ), 03" 
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5. Case of a Nonradial Channel. The solution obtained is easily generalized to the 
case of flow in a channel rotating with constant angular velocity 12 relative to an axis 
which intersects the channel axis, forming some angle therewith. 

As in Sec. i, we introduce a cartesian coordinate system Ox~y*z * rigidly attaehed to 
the channel and oriented such that its axis of rotation passes through the origin of the 
coordinate system and is located in the plane Oy*z*, while the axis Oz* is directed along 
the channel axis in the direction of the flow. We denote the angle between the axis Oz* and 
the vector Q by ~. We then introduce the modified pressure with the expression 

H = p / p  - -  (QV2)[x .2 -i- (U* cos ~ - -  ~* sin ~)~] + 2~2 cos ~ *  

and take 

= ~ sin ~ (5.1) 

It can then be proved that with the assumptions made in Sec. i, the flow of a viscous liquid 
through a rotating nonradial channel will again be described by Eq. (I.i) with boundary con- 
ditions (1.3). Thus it follows that the solution of the problem of the nonradial channel 
will again be defined by Eqs. (2.13), (2.14), in which m is defined by Eq. (5.1). 
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